A python library for accessing the VEML6070 digital UV light sensor from Vishay
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
 
 
cn b1fdcf35dd module: improve Makefile's oneshell mode il y a 6 heures
.github module: set Dependabot commit message prefix il y a 1 jour
tests module: use yapf formatter, reduce pylint warnings il y a 1 jour
veml6070 module: use yapf formatter, reduce pylint warnings il y a 1 jour
.gitignore module: adopt poetry dependency manager il y a 1 jour
.pylintrc module: use yapf formatter, reduce pylint warnings il y a 1 jour
.style.yapf module: use yapf formatter, reduce pylint warnings il y a 1 jour
.travis.yml module: add Makefile for development commands il y a 1 jour
LICENSE Initial commit il y a 4 ans
Makefile module: improve Makefile's oneshell mode il y a 6 heures
README.md module: add Makefile for development commands il y a 1 jour
demo.py module: use yapf formatter, reduce pylint warnings il y a 1 jour
pyproject.toml module: adopt poetry dependency manager il y a 1 jour

README.md

python-veml6070

Build Status

A Python library for accessing the VEML6070 digital UV light sensor from Vishay via python-smbus using the I2C interface.

Default settings are suitable for Raspberry Pi 2 and 3 and was successfully tested using a breakout.

I created this Python library in style of e.g. python-tsl2591 (of the TSL2591 light sensor) since I found either python code broken for my hardware or code targeted at Arduino.

Usage

Consult the datasheet, the application notes and see demo.py for clues how to use this library.

Not all functions of the chip are supported, especially not the interrupt handling since I had no use for this. Please send pull requests for improvements and bug fixes!

Serious Flaws before September 2019

In September 2019 it was discovered (and fixed) that:

  • previously the sensor was never shutdown between measurements which wastes power but still takes measurements successfully
  • the UVA light intensity was calculated wrongly (too high) for rset != RSET_240K due to wrong compensation: higher rset leads to higher sampling time leads to higher absolute ADC step counts which should lead to every ADC step indicating a smaller amount of W/(m*m) of UVA power and a higher precision of the final UVA power but it wrongly behaved the opposite way. The integration_time worked correctly all the time.

Develop

Run make help to find out about the available development commands.

License

Python files in this repository are released under the MIT license.